Thyroid Abscess in a Patient with Acute Lymphoblastic Leukemia During Chemotherapy Induced Neutropenia

Guğistan Bahat, MD1, Nilgün Erten, Assoc. Prof.1, Bülent Saka, MD1, Didem Akallı, MD1, Ali Çalış, MD1, Mehmet Akif Karan, Prof.1, Cemil Taşoğlu, Prof.1, Abdülkadir Kayan, Prof.1
1 Department of Internal Medicine, Istanbul Medical School, Istanbul University
2 Department of Clinical Microbiology and Infectious Disease, Istanbul Medical School, Istanbul University
3 Department of Internal Medicine, Radiology Section, Istanbul Medical School, Istanbul University

ABSTRACT

Fever in neutropenia is a commonly encountered complication during the treatment of hematologic malignancies. Respiratory system, skin, gastrointestinal system and genitourinary system infections are the common causes of fever in neutropenia. In this report, we describe a patient with acute lymphoblastic leukemia who was treated with intensive chemotherapy and developed suppurative thyroiditis during neutropenic period.

Keywords: Febrile neutropenia, thyroid abscess, suppurative thyroiditis, chemotherapy, acute leukemia. Nobel Med 2006; 2 (2): 26-29

INTRODUCTION

Neutropenia and subsequent infection is an important and frequent morbidity and mortality factor in the chemotherapy given patients. In approximately half of the patients, despite the detailed clinical investigation, the infectious etiology cannot be identified. In patients whom the infectious etiology is identified, the infection sites are respiratory system, skin, gastrointestinal system and genitourinary system according to decreased order of frequency. Thyroid is a rare site of infection in neutropenic patients. In this report, we present a case of suppurative thyroiditis in a thyroid region in a patient with acute lymphoblastic leukemia (ALL) during the neutropenic period after chemotherapy. The medical literature is searched for thyroid abscess as a reason for febrile neutropenia and the possible mechanisms for the development of thyroid infection is discussed.

CASE

Common B-ALL (with central nervous system involve-ment) was diagnosed in a 42 years old female patient in January 2002. She was given BFM phase 1 (daunorubicin: 25 mg/m2, vincristine 2 mg, methylprednisolone 48 mg/m2, once a week, for 4 weeks) and thereafter fludarabine (30 mg/m2, between days 2-6), cytosine arabinoside (1 g/m2, between days 1-6), intrathecal methotrexate (6 times) and cranial radiotherapy (10 days), 12 Gray/d. After the first remission was achieved. Allogeneic stem cell transplantation was planned for her next treatment but it could not be performed since no appropriate donor had been found. Her treatment was planned as fludarabine and cytosine arabinoside once in 4-6 months. After a year, the first bone marrow relapse was diagnosed. With the treatment consisted of vincristine 2 mg/week, methylprednisolone 49 mg/d (4 week), the second remission was achieved and fludara-bine (30 mg/m2, between days 2-6), cytosine arabinoside (1 g/m2 twice between days 1-6) treatment was started as consolidation treatment. At the second day of chemotherapy, on the neck, on the thyroid right lobe region, a painful swelling of 3x2 cm developed. There was no erythema or warmth of the skin on the lesion. The thyroid function tests were normal. The thyroid scintography (USG), an encapsulated cystic lesion of 33x20 mm compressing the thyroid right lobe was viewed (Figure 1). At the 11th day of chemotherapy, her tempe-rature increased up to 39.5°C. Her total leukocyte count was 1500/mm3. It was diagnosed as febrile neutropenia and neutropenic 3x1 g. amikacin 1 x 1 g treatment was started. At the second day of antibiotic treatment, an erythema appeared on the swelling at the neck and an induration zone of 5x3 cm involving the adjacent soft tissue developed (Figure 2). The neck USG was performed again and a high dense, hypoechoic collection of 37x13x31 mm occupying the thyroid right lobe region was observed (Figure 3). At the thyroid scintigraphy, gland was larger, its activity distribution was heterogeneous and right lobe's upper part was hypoxic (Figure 4). The thyroid hormones were again in normal limits. There-fore, the suppression of the extrathyroidal cyst was diag-nosed. Since her fever sustained, vancomycin 4x500 mg treatment was added on the third day of antibiotic treatment. With this treatment, her temperature became normal and the induration on the neck disappeared completely. At the 8th day of vancomycin treatment, her temperature increased again and odynephagia complain developed. Since there were vesicular lesions a-round her mouth and candidiasis in her oral cavity, acyclovir 500 mg and amphotericin B 60 mg were added to her therapy. At her upper gastrointestinal system endoscopy, diffuse ulcerations and nodular lesions were seen at the esophagus. Her temperature became normal.
Another thyroid abscess case following chemotherapy was reported by Du et al. and was observed during the course of febrile neutropenia and leukemia. In that case, dissimilar to other cases, not a bacterial but a fungal abscess (Candida abscess) had been diagnosed in the thyroid. However, no data of Candida infection had been found in the other organs or in the blood. Two other cases of fungal (candida) thyroiditis were also presented in the literature in patients with leukemia where the fine needle aspiration aided the diagnosis. It is emphasized that acute supplicative thyroiditis of any origin is uncommon, but fungal infections of the gland are particularly rare.

On the other hand, also a case of supplicative salmonella thyroiditis is reported in an 82-year-old man with undiagnosed chronic lymphocytic leukemia (CLL) who presented with acute swelling of the thyroid gland. Subsequent thyroid aspiration and blood culture yielded group B Salmonella thyroid abscess with septicaemia. As a unique report, a case of supplicative thyroiditis is reported also in a bone marrow transplant (BMT) patient. The patient was a 3-year-old boy of juvenile chronic myelomonocytic leukemia who underwent a second HLA matched bone marrow transplant from his sister. He developed hypothyroidism due to acute supplicative thyroiditis in the recovery phase of BMT which is an extremely rare complication of BMT.

As a conclusion, the case presented here represents a case of thyroid infection in chemotherapy given immunocompromised host. Because of the improvement of diagnostic techniques, intensive chemotherapy application and increased survival rate, this clinical situation might be seen as a complication of chemotherapy applied to leukemia patients. Therefore, thyroid abscess should be kept in mind as a rare source of infection in the immunocompromised host. Chemotherapy induced oral mucosa damage, neutropenia and subsequent cellularity in the thyroid region might be the factors predisposing to thyroid gland infection.

REFERENCES

DISCUSSION

In approximately half of the patients suffering from neutropenic fever, infectious etiology can not be identified despite the detailed clinical investigations. In the patients in whom the infectious etiology is identified, the infection site is respiratory system (35.7%), skin (13.5%), gastrointestinal system (7%), and genitourinary system (6%) in order of decreasing frequency. Thyroid gland is a rare site of infection even in the neutropenic patients. In the literature, there are few case reports of thyroid gland infection following chemotherapy. Imai et al. reported acute suppurative thyroiditis after intensive chemotherapy in two children suffering from acute myeloblastic leukemia. In those 2 patients, after chemotherapy, fever and pain developed in thyroid region. In their laboratory work-up, hyperthyroidism had been found and hypothyroidic regions had been seen in their thyroid USG. Since they had been treated with antibiotics successfully, the bacterial infection had been thought as the etiological factor. One month later, after a transient hyperthyroidism, the thyroid functions had become normal.

Neutropenia and a possible prior cellularity in the thyroid gland had been put forward to predispose to development of thyroiditis. In our patient, a prior extra-thyroid cyst developed and thereafter at the neutropenic period, suppuration of the extrathyroidal cyst and multiple abscess foci had been observed in the thyroid gland. Therefore possibly also in our patient, the cellularity in the thyroid gland developed after chemotherapy induced oral mucosa damage, neutropenia and suppuration of the extrathyroidal cyst predisposed to abscess formation in the thyroid. In our patient, hyperthyroidism was not observed during her course. This might be explained by early control of thyroid abscesses via antibiotherapy. Also, in our case clinical success (disappearance of fever and neutropenia) was achieved via antibiotherapy. However, the extrathyroidal abscess reduced in size but did not disappear completely and needed to be drained externally. In our patient, the bacterial etiology was confirmed by the Gram staining but not proven by the culture similar to the cases reported by Imai et al. The culture might have remained negative because of empirical early initiation of antibiotherapy owing wide antimicrobial spectra due to febrile neutropenia and performing the aspiration and culture after the clinical improvement. Since there were no signs of anemia, the culture was negative for any aerobic anaerobic bacteria. Candida and the signs of the infection (e.g., systemic fever, erythema and induration on the neck) were disappeared by vancomycin treatment, metil-cillin-resistant Staphylococcus was thought to be the responsible microorganism.

Figure 1: Throat USG reveals an encapsulated cystic lesion of 3x2.5 mm compressing the thyroid right lobe.

Figure 2: Erythema and an induration zone of 5x2 cm at the neck.

Figure 3: Neck USG: Hypoechoic collection of 3x1x1.5 cm occupying the thyroid right lobe region (suppression of the extrathyroidal cyst).

Figure 4: Thyroid scintigraphy: Thyroid gland was enlarged. Its activity distribution was heterogeneous and right lobe’s upper part was hypoechogenic.

Figure 5a: Thyroid USG: Multiple anaerobic cystic lesions compatible with abscess cavities in the thyroid gland.

Figure 5b: Extrathyroidal abscess in the neighbourhood of the thyroid right lobe at the subcutaneous fatty tissue of the right side of the neck.

Figure 6: Gram staining of the pus obtained via fine needle aspiration. Gram positive cocci and many polymorphonuclear leukocytes.